The International Cognitive Ability Resource: Development and initial validation of a public-domain measure

David M. Condon
William Revelle

Thirteenth Annual ISIR Conference
San Antonio, Texas
December 15, 2012
International Cognitive Ability Resource ("ICAR")
A *new* measure of cognitive ability?
International Cognitive Ability Resource ("ICAR")

- A *new* measure of cognitive ability?

- Why bother?
A new measure of cognitive ability?

Why bother?

None of the extant measures serve our research needs

...and, as we’ve discovered, other research groups share this problem.
ICAR: How does it differ from existing measures?

1. A **public-domain** measure
 - More convenient, affordable, and flexible administration —> maximally *reproducible* data

2. Not confined to controlled environments (i.e., can be administered over the internet)
 - unproctored
 - power items
 - “Google”-resistant content
 - draw heavily on automatic item generation techniques
 - ...though all nature of item types can be included, regardless of development/administration methods.

3. (quasi) Open-source development and distribution
 - collaboratively developed & maintained by the researchers who use it
ICAR: Two common critiques

1. “You’re giving up the keys to the kingdom”
 - Designed for use in research contexts – not a substitute for proprietary measures used in clinical/diagnostic settings
 - Not recommended for use in selection or high-stakes assessment (though this might someday be possible)

2. “Copyrights are necessary to maintain sufficient validity”
 - The pace of scientific research may be diminished by reliance on proprietary measures (Goldberg, 1999)
 - Copyrights address the prospect of item disclosure by:
 - reducing transparency about item content
 - making testing more difficult
 - An alternative is to decrease the harm caused by item disclosure at the stage of item development using automatic item generation.
Empirical evaluation of existing ICAR measures

- This is not merely theory.

- We have administered public domain items to 200k+ participants

- Full measure reported on here includes 60 items administered in quasi-random subsets to 35k/yr

- Four existing item types include:
 - Matrix Reasoning items (11 items)
 - Verbal Reasoning items (16 items)
 - Letter and Number Series items (9 items)
 - Three-Dimensional Rotation items (24 items)

- Summarize findings with regards to reliability, structure and validity
Sample ICAR items

Matrix Reasoning

Verbal Reasoning

What number is one fifth of one fourth of one ninth of 900?

(1) 2 (2) 3 (3) 4 (4) 5 (5) 6 (6) 7

If the day after tomorrow is two days before Thursday, then what day is it today?

(1) Friday (2) Monday (3) Wednesday (4) Saturday (5) Tuesday (6) Sunday

Letter and Number Series

In the following alphanumeric series, what letter comes next?

I J L O S

(1) T (2) U (3) V (4) X (5) Y (6) Z

In the following alphanumeric series, what letter comes next?

Q S N P L

(1) J (2) H (3) I (4) N (5) M (6) L

Three-Dimensional Rotation

A

B

C

D

E

F

G

H

None of the cubes could be a rotation.

I do not know the solution.
Three studies summarized in the results

- **Study 1**: Random subsets of 14 to 16 items from the full measure (ICAR60) administered to a large online sample

- **Study 2**: The 16 item ICAR Sample Test (ICAR16) administered to a subset of the online sample

- **Study 3**: The 16 item ICAR Sample Test (ICAR16) administered to an offline university sample
Study 1: 80,000 Participants (8/10 - 12/12)

Participants by Country

[Map showing distribution of participants by country]
Study 1: 80,000 Participants (8/10 - 12/12)

Participants by Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>61857</td>
</tr>
<tr>
<td>Canada</td>
<td>3691</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1861</td>
</tr>
<tr>
<td>Australia</td>
<td>1465</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1421</td>
</tr>
<tr>
<td>Philippines</td>
<td>816</td>
</tr>
<tr>
<td>India</td>
<td>807</td>
</tr>
<tr>
<td>Germany</td>
<td>525</td>
</tr>
<tr>
<td>Sweden</td>
<td>395</td>
</tr>
<tr>
<td>Singapore</td>
<td>338</td>
</tr>
</tbody>
</table>

76.9% of total from U.S.

Age by Males and Females

Age: $m=26.1$, $sd=10.7$, med=22
Gender: 66.4% female

Ethnicity % of U.S.

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>% of U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>67.8</td>
</tr>
<tr>
<td>African-American</td>
<td>10.4</td>
</tr>
<tr>
<td>Hispanic-American</td>
<td>7.8</td>
</tr>
<tr>
<td>Two or more</td>
<td>6.2</td>
</tr>
<tr>
<td>Asian-American</td>
<td>4.7</td>
</tr>
<tr>
<td>Native American</td>
<td>1.2</td>
</tr>
<tr>
<td>Other</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Three studies summarized in the results

- **Study 1:** Random subsets of 14 to 16 items from the full measure (ICAR60) administered to a large online sample (80k)

- **Study 2:** The 16 item ICAR Sample Test (ICAR16) administered to a subset of the online sample
 - 4 items of each type
 - 1,909 university-age participants (age: $m = 19.7$ yrs, $sd = 1.4$; 72% female)

- **Study 3:** The 16 item ICAR Sample Test (ICAR16) administered to an offline university sample
Three studies summarized in the results

- **Study 1:** Random subsets of 14 to 16 items from the full measure (ICAR60) administered to a large online sample (80k)

- **Study 2:** The 16 item ICAR Sample Test (ICAR16) administered to a subset of the online sample
 - 4 items of each type
 - 1,909 university-age participants (age: $m = 19.7$ yrs, $sd = 1.4$; 72% female)

- **Study 3:** The 16 item ICAR Sample Test (ICAR16) administered to an offline university sample
 - 16 item ICAR Sample Test and Shipley-2 Composites A and B
 - 137 student participants (age: $m = 19.7$ yrs, $sd = 1.2$; 55% female)
Results: Reliability of the ICAR measures

The full 60 item measure based on composite correlations \((n = 80k)\):

<table>
<thead>
<tr>
<th>Items</th>
<th>Items</th>
<th>(\alpha)</th>
<th>(\omega_h)</th>
<th>(\omega_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAR60</td>
<td>60</td>
<td>0.93</td>
<td>0.60</td>
<td>0.94</td>
</tr>
<tr>
<td>Letter Number Series</td>
<td>9</td>
<td>0.77</td>
<td>0.66</td>
<td>0.80</td>
</tr>
<tr>
<td>Matrix Reasoning</td>
<td>11</td>
<td>0.67</td>
<td>0.56</td>
<td>0.70</td>
</tr>
<tr>
<td>3D Rotation</td>
<td>24</td>
<td>0.93</td>
<td>0.70</td>
<td>0.95</td>
</tr>
<tr>
<td>Verbal Reasoning</td>
<td>16</td>
<td>0.76</td>
<td>0.63</td>
<td>0.77</td>
</tr>
</tbody>
</table>

The 16 item ICAR Sample Test:

<table>
<thead>
<tr>
<th>Items</th>
<th>University Sample ((n = 137))</th>
<th>Online Sample ((n = 1909))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Items</td>
<td>(\alpha)</td>
</tr>
<tr>
<td>ICAR16</td>
<td>16</td>
<td>0.76</td>
</tr>
<tr>
<td>Letter Number Series</td>
<td>4</td>
<td>0.68</td>
</tr>
<tr>
<td>Matrix Reasoning</td>
<td>4</td>
<td>0.54</td>
</tr>
<tr>
<td>3D Rotation</td>
<td>4</td>
<td>0.77</td>
</tr>
<tr>
<td>Verbal Reasoning</td>
<td>4</td>
<td>0.36</td>
</tr>
<tr>
<td>Shipley - Vocabulary</td>
<td>33</td>
<td>0.61</td>
</tr>
<tr>
<td>Shipley - Block Patterns</td>
<td>23</td>
<td>0.83</td>
</tr>
<tr>
<td>Shipley - Abstraction</td>
<td>15</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Notes: \(\alpha\) = Cronbach’s alpha, \(\omega_h\) = omega hierarchical, \(\omega_t\) = omega total. Reliabilities calculated on Pearson correlations.
Results: Structural Characteristics of the ICAR Sample Test

Hierarchical factor analysis

Three-Dimensional Rotation
- R3D.3
- R3D.8
- R3D.4
- R3D.6
- LN.7
- LN.34
- LN.33
- LN.58

Letter and Number Series
- LN.7
- LN.34
- LN.33
- LN.58
- VR.17
- VR.4
- VR.16
- VR.19

Verbal Reasoning
- VR.17
- VR.4
- VR.16
- VR.19

Matrix Reasoning
- MX.45
- MX.46
- MX.55
- MX.47

F1
- 0.7
- 0.6
- 0.6
- 0.6

F2
- 0.7
- 0.7
- 0.5
- 0.5

F3
- 0.6
- 0.5
- 0.4
- 0.4

F4
- 0.6
- 0.5
- 0.2
- 0.2

F1 connects to F2 with 0.5
F2 connects to F3 with 0.7
F3 connects to F4 with 0.7
F4 connects to g

\(\omega_{\text{hierarchical}} = 0.65 \)
\(\omega_{\text{total}} = 0.84 \)

Notes: \(\omega_{\text{hierarchical}} = \) general factor saturation of the model; \(\omega_{\text{total}} = \) total reliable variance
Results: Participant-level correlations with achievement tests

The full 60 item measure (composite):

<table>
<thead>
<tr>
<th></th>
<th>Uncorrected</th>
<th>Corrected for reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SATV</td>
<td>SATQ</td>
</tr>
<tr>
<td>ICAR60</td>
<td>0.42</td>
<td>0.50</td>
</tr>
<tr>
<td>Letter Number</td>
<td>0.31</td>
<td>0.38</td>
</tr>
<tr>
<td>Matrix Reasoning</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>3D Rotation</td>
<td>0.31</td>
<td>0.41</td>
</tr>
<tr>
<td>Verbal Reasoning</td>
<td>0.52</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Note: All values significant at p < .001
Results: Group-level correlations between GRE and ICAR

<table>
<thead>
<tr>
<th>ICAR60</th>
<th>Letter Reasoning</th>
<th>Matrix Reasoning</th>
<th>3D Rotation</th>
<th>Verbal Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREV</td>
<td>0.54</td>
<td>0.45</td>
<td>0.43</td>
<td>0.48</td>
</tr>
<tr>
<td>GREQ</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
<td>0.82</td>
</tr>
<tr>
<td>GREVQ</td>
<td>0.86</td>
<td>0.82</td>
<td>0.81</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Notes: All values significant at p < .001

GRE scores are group means:

- **N = 569,000 “senior and non-enrolled college graduates”** (Educational Testing Service, 2010)
- Took test between July 1, 2005 to June 30, 2008
- 287 “intended graduate major” choices offered with GRE
- Consolidated w/ sample size weighting to 147 university major choices in ICAR
- Correlations based on **88 ICAR majors with more than 50 participants**
Results: Group-level correlations between SAT and ICAR

<table>
<thead>
<tr>
<th>ICAR60</th>
<th>Letter Number Series</th>
<th>Matrix Reasoning</th>
<th>3D Rotation</th>
<th>Verbal Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATV</td>
<td>0.58</td>
<td>0.51</td>
<td>0.30*</td>
<td>0.50</td>
</tr>
<tr>
<td>SATQ</td>
<td>0.82</td>
<td>0.82</td>
<td>0.73</td>
<td>0.80</td>
</tr>
<tr>
<td>SATVQ</td>
<td>0.77</td>
<td>0.73</td>
<td>0.56</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Notes: * not significant. All other values significant at p < .01

SAT scores are group means:

- \(N = 1,411,595 \) “college-bound seniors in class of 2012” (College Board, 2012)
- 38 intended college major choices
- consolidated our 147 university major choices into 31 choices offered w/the SAT
- 7 incompatible majors representing 1.3% of SAT test-takers (exclusive of 9.0% undecided and other)
Results: Correlations with the Shipley-2 (0.87 - 0.99)

Based on participant-level scores in the university sample:

<table>
<thead>
<tr>
<th></th>
<th>SATV</th>
<th>SATQ</th>
<th>SATW</th>
<th>ACT</th>
<th>ShipCompA</th>
<th>ShipCompB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipley-2 Composite A</td>
<td>0.99</td>
<td>0.95</td>
<td>0.99</td>
<td>0.93</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Shipley-2 Composite B</td>
<td>0.90</td>
<td>0.90</td>
<td>0.84</td>
<td>0.89</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ICAR16</td>
<td>0.84</td>
<td>0.79</td>
<td>0.76</td>
<td>0.75</td>
<td>0.99</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Correlations corrected for restriction of range and reliability.
Summary of Results

- Reliability for the full measure based on composite scores is high ($\alpha > 0.9$).

- Factor structure suggests four distinct but correlated factors.

- Corrected correlations of full measure with self-reported achievement test scores range from 0.50 - 0.57 in the online sample to 0.75 - 0.84 in the university sample.

- Group level correlations based on major were 0.77 - 0.86 between the full measure and achievement test scores.

- Corrected correlations for the 16 item ICAR Sample Test with the Shipley-2 are 0.87 - 0.99.
Future Directions: Further development underway

- Focus on automatic item generation techniques

- Broaden scope of item types:
 - Exploring use of “cloze”-type reading comprehension items to assess verbal ability

- Several spatial ability item types under consideration or development.
 - 2D rotation tasks
 - map-reading/navigation
 - paper folding
 - cross-section of 3D objects (Cohen & Hegarty, 2007)
Future Directions: Applications in individual differences research

Mean ICAR60 score by Academic Major and Discipline

Effect size of mean score differences > 1.5 sd
Future Directions: Applications in individual differences research

Mean ICAR60 score by Academic Major and Discipline
Summary

- Validation work is never done but we are encouraged by the findings thus far.

- Collaboration will be the key to rapid development and adoption of the measure among the intelligence research community.
Supplementary Materials
TAI Model of Individual Differences

Synthetic Aperture Personality Assessment ("SAPA")
- cross-sectional, large-scale assessment over the Internet

- **Temperament**
 > 2,400 public-domain IPIP items
 > 1,350 non-proprietary non-IPIP items
 50+ trait constructs evaluated since 2008

- **Abilities**

- **Interests**
 8 public-domain vocational scales based on Holland’s RAISEC
 33 public-domain avocational scales
SAPA methodology:

- Administer subset of items to each participant and create synthetic correlation matrices.
- 125 unique participants each day
- Participation driven by response-based feedback on temperament
 - 20 demographic variables
 - 60 temperament and interest items
 - 16 ICAR items
- Across participants, administering 200-600 items at a time.
- Efficient exploration of item-level correlations within and between scales.
Results: Validity

The full 60 item measure (composite):

<table>
<thead>
<tr>
<th></th>
<th>SATV</th>
<th>SATQ</th>
<th>SATW</th>
<th>ACT</th>
<th>ICAR60</th>
<th>ICAR-LN</th>
<th>ICAR-MR</th>
<th>ICAR-R3D</th>
<th>ICAR-VR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATV</td>
<td>0.86</td>
<td>0.84</td>
<td>0.97</td>
<td>0.65</td>
<td>0.47</td>
<td>0.38</td>
<td>0.36</td>
<td>0.35</td>
<td>0.64</td>
</tr>
<tr>
<td>SATQ</td>
<td>0.73</td>
<td>0.88</td>
<td>0.82</td>
<td>0.63</td>
<td>0.55</td>
<td>0.46</td>
<td>0.44</td>
<td>0.45</td>
<td>0.62</td>
</tr>
<tr>
<td>SATW</td>
<td>0.84</td>
<td>0.72</td>
<td>0.88</td>
<td>0.63</td>
<td>0.41</td>
<td>0.33</td>
<td>0.30</td>
<td>0.30</td>
<td>0.57</td>
</tr>
<tr>
<td>ACT</td>
<td>0.59</td>
<td>0.58</td>
<td>0.58</td>
<td>0.95</td>
<td>0.45</td>
<td>0.34</td>
<td>0.33</td>
<td>0.37</td>
<td>0.53</td>
</tr>
<tr>
<td>ICAR60</td>
<td>0.42</td>
<td>0.50</td>
<td>0.37</td>
<td>0.42</td>
<td>0.93</td>
<td>0.92</td>
<td>0.98</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>ICAR-LN</td>
<td>0.31</td>
<td>0.38</td>
<td>0.27</td>
<td>0.29</td>
<td>0.78</td>
<td>0.77</td>
<td>0.88</td>
<td>0.60</td>
<td>0.92</td>
</tr>
<tr>
<td>ICAR-MR</td>
<td>0.27</td>
<td>0.34</td>
<td>0.23</td>
<td>0.26</td>
<td>0.77</td>
<td>0.63</td>
<td>0.67</td>
<td>0.68</td>
<td>0.84</td>
</tr>
<tr>
<td>ICAR-R3D</td>
<td>0.31</td>
<td>0.41</td>
<td>0.27</td>
<td>0.35</td>
<td>0.89</td>
<td>0.51</td>
<td>0.54</td>
<td>0.93</td>
<td>0.59</td>
</tr>
<tr>
<td>ICAR-VR</td>
<td>0.52</td>
<td>0.51</td>
<td>0.47</td>
<td>0.45</td>
<td>0.79</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Uncorrected correlations below the diagonal, correlations above the diagonal corrected for reliability.

Participant level, IRT-based scores:

<table>
<thead>
<tr>
<th></th>
<th>SATV</th>
<th>SATQ</th>
<th>SATW</th>
<th>ACT</th>
<th>ICAR60</th>
</tr>
</thead>
<tbody>
<tr>
<td>SATV</td>
<td>0.86</td>
<td>0.87</td>
<td>0.97</td>
<td>0.69</td>
<td>0.47</td>
</tr>
<tr>
<td>SATQ</td>
<td>0.73</td>
<td>0.88</td>
<td>0.82</td>
<td>0.64</td>
<td>0.45</td>
</tr>
<tr>
<td>SATW</td>
<td>0.84</td>
<td>0.72</td>
<td>0.88</td>
<td>0.66</td>
<td>0.41</td>
</tr>
<tr>
<td>ACT</td>
<td>0.59</td>
<td>0.58</td>
<td>0.58</td>
<td>0.95</td>
<td>0.42</td>
</tr>
<tr>
<td>ICAR60</td>
<td>0.33</td>
<td>0.39</td>
<td>0.3</td>
<td>0.33</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Uncorrected correlations below the diagonal, correlations above the diagonal corrected for incidental selection effects and reliability.
Validity: Uncorrected correlations

Comparison of correlations using different scoring methods

Using composite scale scores

<table>
<thead>
<tr>
<th></th>
<th>SATV</th>
<th>SATQ</th>
<th>SATW</th>
<th>SATVQ</th>
<th>SATVQW</th>
<th>ACT</th>
<th>ICAR60</th>
<th>LN</th>
<th>MX</th>
<th>R3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAR60</td>
<td>0.42</td>
<td>0.50</td>
<td>0.37</td>
<td>0.50</td>
<td>0.46</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAR-LN</td>
<td>0.31</td>
<td>0.38</td>
<td>0.27</td>
<td>0.37</td>
<td>0.33</td>
<td>0.29</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAR-MX</td>
<td>0.27</td>
<td>0.34</td>
<td>0.23</td>
<td>0.33</td>
<td>0.30</td>
<td>0.26</td>
<td>0.77</td>
<td>0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAR-R3D</td>
<td>0.31</td>
<td>0.41</td>
<td>0.27</td>
<td>0.39</td>
<td>0.35</td>
<td>0.35</td>
<td>0.89</td>
<td>0.51</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>ICAR-VR</td>
<td>0.52</td>
<td>0.51</td>
<td>0.47</td>
<td>0.55</td>
<td>0.53</td>
<td>0.45</td>
<td>0.79</td>
<td>0.70</td>
<td>0.60</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Notes: All values are statistically significant at $p < .001$

Using IRT-based scoring

<table>
<thead>
<tr>
<th></th>
<th>SATV</th>
<th>SATQ</th>
<th>SATW</th>
<th>SATVQ</th>
<th>SATVQW</th>
<th>ACT</th>
<th>ICAR60</th>
<th>LN</th>
<th>MX</th>
<th>R3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICAR60</td>
<td>0.33</td>
<td>0.39</td>
<td>0.30</td>
<td>0.38</td>
<td>0.36</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAR-LN</td>
<td>0.22</td>
<td>0.27</td>
<td>0.20</td>
<td>0.26</td>
<td>0.24</td>
<td>0.21</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAR-MX</td>
<td>0.16</td>
<td>0.21</td>
<td>0.15</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
<td>0.56</td>
<td>0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAR-R3D</td>
<td>0.22</td>
<td>0.29</td>
<td>0.19</td>
<td>0.27</td>
<td>0.25</td>
<td>0.24</td>
<td>0.65</td>
<td>0.26</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>ICAR-VR</td>
<td>0.33</td>
<td>0.33</td>
<td>0.30</td>
<td>0.35</td>
<td>0.34</td>
<td>0.32</td>
<td>0.69</td>
<td>0.38</td>
<td>0.26</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Notes: All values are statistically significant at $p < .001$
Validity: About corrections

- Two corrections are warranted for the correlations with achievement test scores:
 - Correction for (imperfect) reliability
 - For achievement test scores, using meta-analytic findings of actual-to-self-report correlations (Kuncel, Crede & Thomas, 2005; Mayer, Stull, Campbell, Almeroth, Bimber, Chun & Knight, 2006; Cole & Gonyea, 2009)
 - Correction for incidental selection effect caused by optional self-reporting of achievement test scores
 - Need to correct for an unidentified and unmeasured variable(s) influencing score-reporting
 - Using the two-step “Heckman” correction method (Heckman, 1976, 1979; Greene, 2008; Toomet & Henningsen, 2008)

- Note that correction for range restriction is not warranted in the online sample.
Validity – Group-level correlations between GRE and ICAR

Mean ICAR60 by GREVQ scores
(N = 80k; k = 88)

Educational Testing Service (2010). Table of GRE scores by intended graduate major field.

